Researchers of NSM analyze the keys of dynamic fragmentation of metallic materials

The scientists have analyzed the mechanisms which reside behind the phenomenon of dynamic fragmentationof ductile metallic materials, that is, those that exhibit large permanent deformations when they are subjected to severe mechanical loading (steel, aluminum, tantalum…). Previously it was thought that dynamic fragmentation was basically triggeredby the inherent defects of the material (pores). What this research suggests is thatthe key mechanism which controls dynamic fragmentation may not be the porosity of the metallic material (defects), but the inertia effects.

One of the authors of the study, Komi Espoir N’Souglo, pointed out that “we have developed a simple analytical model to shed light into the mechanisms which control dynamic fragmentation in porous metals used in the aerospace industry and the civilian-security sector”. This scientist works in this research line at UC3M within the European research project OUTCOME.

“This work provides a new approach for analyzing and designing structures for which it is important to predict and control the size of the fragments that form when a metallic material fractures under impact loading,” added OUTCOME project coordinator, José Antonio Rodríguez, from the Department of Continuum Mechanics and Structural Analysis, and coauthor of the paper recently published in the journal Proceedings of the Royal Society A.

Read the complete news (in English) here.

Share this: